321 research outputs found

    Modeling Distances in Large-Scale Networks by Matrix Factorization

    Get PDF
    In this paper, we propose a model for representing and predicting distances in large-scale networks by matrix factorization. The model is useful for network distance sensitive applications, such as content distribution networks, topology-aware overlays, and server selections. Our approach overcomes several limitations of previous coordinates-based mechanisms, which cannot model sub-optimal routing or asymmetric routing policies. We describe two algorithms -- singular value decomposition (SVD) and nonnegative matrix factorization (NMF) -- for representing a matrix of network distances as the product of two smaller matrices. With such a representation, we build a scalable system -- Internet Distance Estimation Service (IDES) -- that predicts large numbers of network distances from limited numbers of measurements. Extensive simulations on real-world data sets show that IDES leads to more accurate, efficient and robust predictions of latencies in large-scale networks than previous approaches

    Learning a kernel matrix for nonlinear dimensionality reduction

    Get PDF
    We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into a nonlinear feature space, we show how to discover a mapping that unfolds the underlying manifold from which the data was sampled. The kernel matrix is constructed by maximizing the variance in feature space subject to local constraints that preserve the angles and distances between nearest neighbors. The main optimization involves an instance of semidefinite programming---a fundamentally different computation than previous algorithms for manifold learning, such as Isomap and locally linear embedding. The optimized kernels perform better than polynomial and Gaussian kernels for problems in manifold learning, but worse for problems in large margin classification. We explain these results in terms of the geometric properties of different kernels and comment on various interpretations of other manifold learning algorithms as kernel methods

    Multiband statistical learning for f\u3csub\u3e0\u3c/sub\u3e estimation in speech

    Get PDF
    We investigate a simple algorithm that combines multiband processing and least squares fits to estimate f0 contours in speech. The algorithm is untraditional in several respects: it makes no use of FFTs or autocorrelation at the pitch period; it updates the pitch incrementally on a sample-by-sample basis; it avoids peak picking and does not require interpolation in time or frequency to obtain high resolution estimates; and it works reliably, in real time, without the need for postprocessing to produce smooth contours. We show that a baseline implementation of the algorithm, though already quite accurate, is significantly improved by incorporating a model of statistical learning into its final stages. Model parameters are estimated from training data to minimize the likelihood of gross errors in f0 as well as errors in classifying voiced versus unvoiced speech. Experimental results on several databases confirm the benefits of statistical learning

    Statistical signal processing with nonnegativity constraints

    Get PDF
    Nonnegativity constraints arise frequently in statistical learning and pattern recognition. Multiplicative updates provide natural solutions to optimizations involving these constraints. One well known set of multiplicative updates is given by the Expectation-Maximization algorithm for hidden Markov models, as used in automatic speech recognition. Recently, we have derived similar algorithms for nonnegative deconvolution and nonnegative quadratic programming. These algorithms have applications to low-level problems in voice processing, such as fundamental frequency estimation, as well as high-level problems, such as the training of large margin classifiers. In this paper, we describe these algorithms and the ideas that connect them

    Nonnegative deconvolution for time of arrival estimation

    Get PDF
    The interaural time difference (ITD) of arrival is a primary cue for acoustic sound source localization. Traditional estimation techniques for ITD based upon cross-correlation are related to maximum-likelihood estimation of a simple generative model. We generalize the time difference estimation into a deconvolution problem with nonnegativity constraints. The resulting nonnegative least squares optimization can be efficiently solved using a novel iterative algorithm with guaranteed global convergence properties. We illustrate the utility of this algorithm using simulations and experimental results from a robot platform

    Exact computations in the statistical mechanics of disordered systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1994.Vita.Includes bibliographical references (leaves 108-113).by Lawrence K. Saul.Ph.D

    Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks

    Get PDF
    Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples. Unfortunately, estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step by bounding likelihoods instead of computing them exactly. We introduce extended and complementary representations for these networks and show that the estimation of the network parameters can be made fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains. The complementary networks can be used for continuous density estimation as well
    • …
    corecore